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Summary 

Nearly all existing methods of analysing hazards associated with dispersing clouds of 
heavy gas are based on the mean concentration, and ignore fluctuations about the mean. 
It is argued that, since the root mean square value of these fluctuations is not small com- 
pared with the mean, new methods should be developed which take explicit account of 
the fluctuations. The basis of one such method, based on the probability density functions 
of concentration, is summarized and some of the practical points relevant to the use of 
this method are discussed. The proposed method is illustrated by reference to recent 
experimental work in methane jets. 

Introduction 

This paper is concerned with certain theoretical considerations relevant to 
the description of the dispersion of heavy gas clouds, and to the analysis of 
potential hazards associated with such clouds. The emphasis will be on the 
use of statistical concepts and techniques. For clarity, attention will be con- 
fined throughout to the case of the instantaneous release at time t = 0 of a 
finite volume Q of a heavy gas. Continuous releases will therefore not be 
considered, although many of the ideas discussed in the paper can be adapted 
to them. 

The variable of primary concern in this paper is I’(x,t), the concentration 
by volume of the heavy gas, where t is time since release and the vector x 
measures location in space with respect to a suitably specified origin. It needs 
emphasizing that I’(%, t) will always denote the actual concentration in a 
single realization of the dispersion. By the actual concentration is meant the 
concentration defined according to the continuum hypothesis. Thus suppose 
6 V is a small volume of space surrounding the point x at time t, and suppose 
it contains a volume 6 V, of pure heavy gas. Then I’(& t) is the value of 
(6 VJS V) when 6 V1’3 is both much larger than the mean distance between 
gas molecules (-lOmg m) and also much less than distances characteristic of 
the fine-scale structure of the velocity and density fields of the continuum 
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(-1O-3 m). Now the spatial resolution that can be achieved with practical 
concentration sensors in field trials is inevitably much greater than 10V3 m. 
In so-me circumstances therefore it is necessary to distinguish the measured 
concentration from the actual concentration, and the suffix m will be used for 
this purpose. Thus rrn (x, t) denotes the measured concentration at position x 
and time t in a single realization of the dispersion. 

In any single realization, the heavy gas is released into an atmosphere in 
which the air flow is turbulent. Further turbulence is generated by the 
buoyancy forces caused by the density difference between the released gas 
and the ambient air. The predominant and distinctive feature of turbulent 
flow is its randomness, meaning that the fluid velocity at a particular place 
at a particular time cannot be predicted in practice. The inevitable conse- 
quence of the randomness for the concentration field I’(x, t) is that it also is 
random. The results of two separate realizations of the dispersion will in- 
evitably be different from one another (and different of course in an un- 
predictable way) whatever precautions are taken to ensure that conditions 
at release are the same in each realization. 

Consider the series, or ensemble, of all possible realizations of the disper- 
sion in which conditions at release, such as the container geometry and the 
initial density of gas in the container, are the same in each realization of the 
ensemble. Let the separate realizations in the ensemble be numbered from 
1 to infinity. Denote by r”‘(x,t) the concentration at position x and time t 
in the rth realization. The ensemble mean concentration C (x, t) is defined by 

C(x, t) = lim 1 4 P(x,t) 
[ n+- n f$ 1 = F(x,t), (1) 

where the overbar notation is used as a shorthand for the limit process. In 
practice C (x, t) has to be estimated as the mean of the measured values of 
I’(x, t) in a finite number N of realizations, and the larger N is, the closer is 
the estimated value likely to be to the real ensemble mean concentration. 

Since r(x, t) is random, the concentration in any one realization will be 
different from C(x, t). In other words C(x, t) can never be the concentration 
in one realization, just as 3: can neuer be the result of the throw of a single 
dice (even though 3; is the ensemble mean of the possible values 1,2,3,4,5,6). 
Define the fluctuation in concentration by 

c(x,t) = r(q) - c(x,t); (2) 
from eqn. (1) it follows that C(x, t) = 0 for each x and t. By definition, the 
ensemble mean square fluctuation 7(x, t) satisfies 

cz(x t) = [r(x,t) - c(x,tp = F(q) - c*(x,t). (3) 

In the language of statistics C (x, t) and 2(x, t) are the mean and variance 
of the concentration at position x at time t. A measure of the degree of 
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variability between different realizations of the ensemble is provided by 
I(x,t), where 

I(x,t) = 
x43w) 

C(x,t) ’ (4) 

In the terminology on pp. 229-230 of Csanady [l], I(x,t) is the relative 
intensity of the concentration fluctuations. Another commonly used measure 
of variability is the peak to mean ratio, but this is less convenient in theoret- 
ical analysis than I(x,t). Furthermore this measure has the serious practical 
disadvantage that it is difficult to estimate the peak concentration reliably. 

From the practical point of view, it would be justified to neglect the 
variability between different realizations of the ensemble if I(x,t) were much 
less than 1. If this were true then the results from a single realization would, 
for example, form a sufficient basis for hazard assessment. But what evidence 
there is strongly suggests that I(x,t) is not much less than 1. There are ap- 
parently no reported measurements of I(x,t) for clouds of heavy (or even 
neutrally buoyant) gases. However values of I(x,t) of order 5-10 have been 
recorded in plumes of material released from a continuous source at distances 
from the centre line of the order of the mean plume width (Csanady [ 11, 
pp. 236-242; Fackrell and Robins [ 21). Theoretical work by Chatwin and 
Sullivan [ 3,4] is consistent with large values of 1(x, t) in both plumes and 
clouds. There is no experimental or theoretical support for the hypothesis 
that I(x,t) is much less than 1. Despite this evidence, nearly all existing 
methods of analysing the hazards associated with heavy gases dispersing in 
the atmosphere appear to ignore concentration fluctuations, and assume that 
knowledge of the ensemble mean concentration C (x, t) is sufficient for this 
purpose. Descriptions and summaries of many of these methods are given, 
for example, by Havens [ 5,6], McQuaid [ 71 and Fay [ 81. 

It is the main thesis of this paper that, because they neglect concentration 
fluctuations and all variability between different realizations of the same 
ensemble, these methods are inadequate in principle, and in practice. 
Accordingly the principles of another method of analysing hazards are out- 
lined in the next section, and, in the remaining sections, some important 
practical questions of special relevance to the hazards associated with dis- 
persing heavy gas clouds are discussed. 

The probability density function p (8;x, t) 

Consider a specified ensemble of possible realizations of the dispersion of 
a cloud of a specified volume of a specified heavy gas. As in eqn. (l), let 
I’@)@, t) be the concentration at position x and time t in the rth realization. 
Now let 0 be a possible value of I’(‘)(x,t) and let 60 be a small increment in 8. 
The proportion of the realizations for which I’(‘)(x,~) lies between f3 and 
0 + 66’ obviously depends on 8, and on x and t, and will vanish as 68 approaches 
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zeroi Let its value be p (B;x, t)M. In statistical language p (B;x, t) is the 
probability density function of concentration at position x and time t. More 
formally 

p(e;x,t)u = prob.(e G r(x,t) < e + 6e), (5) 

where prob. is an abbreviation for probability. The abbreviation p.d.f. is often 
used for probability density function. 

There are some obvious properties that p must satisfy. Since I’(x,t) is non- 
negative, p(tl;x,t) is identically zero for 0 < 0. Also the value of I”‘)(x, t) 
must lie between B and 0 + 68 for some 0 so that, on adding the proportions 
in all such intervals, the sum must be 1. In other words, 

1 

.I- 
p(e;x,t)de = 1. (6) 

0 

Every p.d.f. satisfies an equation analogous to eqn. (6). Note that when, as 
in this paper, I’(x,t) is defined as a concentration by volume, it can never 
exceed 1. Thus the choice of the upper limit in eqn. (6) as 1 ensures com- 
plete generality. But for any given ensemble, there will be a maximum attain- 
able concentration emax for each x and t, such that p(e;x,t) = 0 for 0 > e,,,. 
Note that emax will often be strictly less than 1, as, for example, when the 
gas is mixed with air before release. Thus eqn. (6) can be replaced by 

bax 
f p(e;x,t)de = 1. 

JO 

Except at the instant of release 8,,, is normally an unknown quantity which 
varies with x and t. 

The ensemble mean concentration C(x,t) defined in eqn. (l), and the 
ensemble mean square fluctuation 2(x, t) defined in eqn. (3), are related to 
P(e;x,t) by 

c(x,t) =j ep(e;x,t)de, 
0 

and 

(8) 

1 

?(x,t) =J(e - cj2p(e;x, t)de. 
0 

(9) 

In eqns. (8) and (9) the upper limit can of course be replaced by emax, and 
other ensemble mean quantities can be defined by similar equations. 

The practical value of p (B;x, t) for hazard assessment can be illustrated by 
considering a flammable gas. After release the gas-air mixture at position x 
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and time t will be ignitable if the value of the concentration I’(x,t) lies be- 
tween Br and d2, where 6’i and 13~ are characteristic of the gas, and e1 is the 
lower flammable limit (LFL). For methane the conventional LFL is 0.05. 
Note that here the term “ignitable at position x” will mean simply that the 
gas-air mixture would burn at position x in the presence of an ignition 
source, whether or not such burning would go right back to the source or be 
rapidly extinguished. It then follows from the meaning of p (O;x, t) that the 
probability that the gas-air mixture is ignitable at position x and time t is 

prob(e, < r(x,t) < e,) =p’ p(e;x,t)de. WV 
0, 

Likewise the value of P(x,t), where 

(11) 

is the probability, or chance, that in any one realization of the ensemble the 
concentration at position x and time t is greater than LFL. Altematively;it 
is the proportion of realizations in the whole ensemble for which this con- 
centration is greater than 6’ 1. 

The equation 

P(x,t) = 0, (12) 

where a! is a fixed constant satisfying 0 < a! < 1 is, for fixed t, a surface at 
every point of which there is a probability a! that the concentration of gas 
exceeds LFL. For every point outside the surface the probability that the 
concentration exceeds LFL is less than 0~. Furthermore, for fixed t, each 
point in space is associated with just one value of 01 so that it lies on a 
unique surface of the family whose equation is (12). Each of these surfaces 
intersects the ground in a curve, or contour. Note that since the cloud will 
spread, on the average, as t increases, the surface P(x,t) = CY with a: fixed. 
will change its size and shape as t increases. 

There are, of course, other hazards associated with gases dispersing in the 
atmosphere. For flammable gases there is the hazard of complete burn-up of 
the cloud in the presence of an ignition source at position x and time t. 
Ignitability at position x and time t, as defined above, is obviously a neces- 
sary condition for complete burn-up, but whether complete burn-up follows 
ignition depends not only on conditions at position x and time t, but also on 
whether there is a continuous path of ignitable material extending right back 
to the source. Thus whether complete bum-up follows ignition, or not, de- 
pends on conditions at places and times other than those where ignition oc- 
curred. With toxic dispersing gases, harm occurs at position x at time t if the 
dosage (the time integral of the concentration at position x from release up to 
time t) exceeds a specified value, although for some materials the trade-off 
between concentration and duration of exposure is non-linear for a given 
level of damage. 
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For any specific haze& such as ignitability or those described above, 
a function P(x, t) can be defined as the probability that hazardous conditions 
exist at position x at time t. In the case of ignitability, P(x, t) is simply 
related to p(6;x, t) by eqn. (ll), but for other hazards, like those described 
above, P(x, t) will not be so simply obtained since its value clearly depends 
on conditions at points other than x and/or at times other than t. In such 
cases P(x, t) will be related to multi-point p.d.fs of l?(x, t), which are like 
the one-point p.d.f. p (B;x,t) but refer to the concentrations at two (or more) 
different positions and/or times. Summaries of the properties of such func- 
tions are given by Monin and Yaglom [ 9, lo], who also discuss p (B;x, t) in 
more detail than is given here. 

Whatever the hazard, the location, for each t, of the surfaces p (x, t) = a, 
or (less ambitiously) of the contours in which they intersect the ground, 
would be a satisfactory, even ideal, conclusion to the hazard analysis. Safety 
standards would be based on the location in space, and the variation in time, 
of the surface, or contour, on which P(x, t) was equal to a predetermined 
value of cl. The choice of this value of (Y is, of course, a question for politicians 
to decide and one on which physical science has no bearing. But it does need 
stressing that (in general) safety standards cannot be based on cy = 0; it can 
never be absolutely guaranteed that hazardous conditions will not occur at 
any particular place. 

Previous investigations 

Prior to the publication of two pioneering papers in the same year by 
Lundgren [ll] and Monin [12], research on the turbulent dispersion of gases 
was mainly devoted to the properties of the ensemble mean concentration 
C(x, t), and to the effect on this of other important work like that described 
by Taylor [ 131, Richardson [ 141 and Batchelor [ 151. In contrast, the years 
since 1967 have seen a growing research effort devoted to the investigation, 
by both experimental and theoretical means, of the properties of p (B;x, t) 
and allied functions. With some exceptions the results of this research have 
not yet been applied to the analysis of hazards associated with dispersing 
heavy gases. However there is no doubt, in my opinion (and similar beliefs 
are expressed on pps. 222-223,227-233 of Csanady [l] and by Birch, 
Brown and Dodson [ 16]), that eventually almost all of the analysis of 
hazards in which turbulence plays a significant role will be in accordance 
with the framework outlined above, i.e. based on models of p (B;x, t) and 
allied functions. Quantification of the word “eventually” is, of course, 
difficult, and depends on estimating the rapidity both of increases in 
appropriate experimental results and of advances in computer technology. 

Although p (B;x, t) is more difficult to estimate than C(x, t) because it 
contains the extra dependent variable 0, the attempt would seem to be 
worthwhile because p(B;x, t) contains so much more information than C(X, t). 

Very few measurements of I’(x, t) have been made in dispersing gas clouds, 
mainly because of the great experimental difficulty involved in keeping 
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accurate track of the cloud’s position. The experimental determination of 
p(B;x, t) would, furthermore, require a large number of separate releases of 
the cloud followed by direct use of the definition of p (O;x, t), given above 
in eqn. (5) and the immediately preceding text. The same statement is, of 
course, true for the other statistical properties of I’(x,t), like the ensemble 
mean concentration C (x, t), which is defined by, and must be determined 
using, eqn. (1). At the moment, in fact, it seems that reasons of time and 
cost make the direct determination of p (O;x,t), or even C(x,t), an impractical 
proposition in gas clouds, even for experiments as extensive as those reported 
by Picknett [ 171. 

A long-term aim is to determine p (O;x, t) theoretically by using the exact 
evolution equation for p(tl;x,t). This equation, and ways of handling it, are 
discussed by Dopazo and O’Brien [18], Janicka, Kolbe and Kollmann [19] 
and Pope [ZO]. In view of the early stages of this field of research, however, 
this aim does not seem likely to be realizable in the immediate future (say 
5 years). None of the work referred to considers a situation whose physics 
is as difficult and complicated as that controlling the dispersion of heavy gas 
clouds. 

The difficulties of determining p (B;x, t) for heavy gas clouds, both by 
experiments or by theoretical means, can be resolved only by further research. 
In my opinion, such research should concentrate, for the moment, on under- 
standing how the form of p(O;x,t) is determined by the basic physical pro- 
cesses influencing the dispersion, and unnecessarily complicated and detailed 
mathematics should be avoided. Some understanding has already been 
provided through measurements of p (B;x, t) in statistically steady flows, 
when p (B;x, t) becomes independent of t. In such cases p (0;~) can be deter- 
mined by taking many separate measurements of I’(x, t) at position x in one 
run, constructing a histogram, and then using the definition in eqn. (5). 

Examples of p (0;x) determined in essentially this way by Birch, Brown, 
Dodson and Thomas [21] are shown in Fig. 1. The measurements were made 
in a jet of natural gas injected into air at a distance 1Od downstream from the 
orifice, where d is the orifice diameter, and at four separate distances r from 
the jet axis. In Fig. l(a), taken on the jet axis, p (0;x) has a unimodal struc- 
ture with emax being about 0.8. The fact thatp(0;x) = 0 in Fig. l(a) shows 
that there is no chance of encountering zero values of concentration (that 
is pure entrained air) on the jet axis. As the measuring location moves off 
the axis, the chance of encountering lower concentrations increases and at 
r/d = 1.3 - Fig. l(b) - there is a significant probability of encountering 
entrained air. However the form of p (0;x) is still unimodal with the peak cor- 
responding to a non-zero value of concentration. Between r/d = 1.3 and r/d = 
1.5 - Fig. l(c) -the form of p(B;x) becomes bimodal with the larger of the 
peaks being at zero concentration. As r/d increases from 1.5 to 1.8 the bi- 
modal structure is maintained with the ratio of the amplitudes at the two 
peaks increasing rapidly. For large values of r/d, greater than 1.8, the peak 
at the non-zero value of concentration will disappear altogether. 
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Fig. 1. Measured probability density functions of concentration by volume of methane 
in natural gas jet, Birch, 13rown, Dodson and Thomas [21]. 

In accordance with eqn. (6), the area under each of the graphs in Fig. 1 is 1 
(although this is not immediately obvious because of the differing scales). The 
hatched areas in Figs. l(b) and l(c) are equal to the values of 3 (x), where 

0.15 

P(X) = s p(fJ;x)de 

0.0 5 
(13) 

is, as stated in eqn. (lo), the probability that the gas-air mixture in the jet 
is ignitable. In later work by the same group (Birch, Brown and Dodson [16] ) 
the values of ;a(~) at many places in the jet were measured by generating a 
spark every 3 set until either ignition was observed or until a predetermined 
maximum number of sparks had been generated. This procedure was repeated 
400 times for each position X, and ‘P(x) was taken to be the proportion of 
the 400 trials for which ignition (or flame formation) was observed. The 
experimental results are shown in Fig. 2 (as the point x at which measure- 
ments are taken moves along the jet axis) and in Fig. 3 (as x moves radially 
outwards in a plane at a distance 40d downstream from the orifice). 

The experimental points were compared with theoretical curves of 3 (x), 
indicated by the solid lines in Figs. 2 and 3. The theoretical curves were ob- 
tained from eqn. (13) by substituting simple forms forp(o;x), these forms 
being chosen on the basis of the curves shown in Fig. 1. Full details are given 
by Birch, Brown and Dodson [16], but, to illustrate the method, it can be 
noted that the solid curve in Fig. 2 was obtained by assuming that p($;x) was 
a Gaussian (or normal) distribution. This is a good approximation to the 
measured curve shown in Fig. l(a). Agreement between theory and experi- 
ment is good, particularly in Fig. 2, and these experiments therefore provide 
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strong support for the statistical approach to hazard analysis advocated in 
this paper. 

On the other hand, it is clear from Fig. 3 that the ensemble mean concen- 
tration C(x), as shown by the dashed curve, is not, on its own, of much 

50 100 150 xid 

Fig. 2. Ignition probability y(x) along axis of natural gas jet, 

C(x) 

0.10 

0.05 

Brown and Dodson [161. 

Fig. 3. Experimentally determined flammable boundary, from ref. [ 161 (see text). 
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value in estimating 3 (x). The same negative conclusion about the value of 
C(X) as an indicator of potential hazards was reached in further experiments 
by Birch, Brown and Dodson [ 161. In these experiments, the results of which 
are shown in Fig. 4, the flammable boundary for total burn-up of the jet was 
measured by generating a spark at a frequency of 2 kHz at each of many 
different points. It is clear from Fig. 4 that the measured boundary is very 
different from the contour on which C(X) is equal to 0.05, the LFL. 

L 8 12 16 rid 

Fig. 4.Ignition probability T(x) in radial plane of natural gas jet, Birch, Brown and 
Dodson [ 161. Measurements made at Reynolds numbers 12500 (A), 16700 (X ) and 
20900 (0). Solid lines are contours of ensemble mean concentration. 

The concept of an ensemble, and its importance 

The term “ensemble” was used earlier in the phrase “ensemble of all 
possible realizations of the dispersion”, but it is now appropriate to 
emphasize the fundamental importance of this concept for the analysis of 
hazards associated with dispersing heavy gas clouds (or, indeed, any 
phenomenon affected by turbulence). Continue to suppose that in each 
realization of the dispersion, a fixed quantity of gas occupying a specified 
shape is released by an identical mechanism at t = 0. Now consider two 
separate series of realizations, each satisfying these conditions. Suppose that 
in the first series no special control is exerted over the time of day, or the 
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ambient atmospheric turbulence (including wind speed and stability) when 
release occurs, and suppose that x is measured throughout each realization 
relative to the initial centre of mass of the cloud. On the other hand suppose 
that in each realization of the second series, release occurs at the same time 
of day under the same ambient atmospheric conditions, and that x is measured 
throughout each realization relative to the instantaneous centre of mass of 
the cloud. 

Clearly (since the ambient flow is turbulent in each realization of each 
series) the value of I’(x ,t) for fixed x and t will differ from realization to 
realization in both the first and second series. However, and this is the 
essential point, the statistical properties of I’(x, t) for the first series will be 
different from those for the second. It is, for example, evident that there 
will be far more variability from realization to realization in the first than 
in the second series. 

The conclusion is that the statistical properties of I’(x, 1), including 
p(O;x,t), C(x,t) and F(x,t), can be meaningfully defined only for a 
specified series, or ensemble, of realizations. The term “mean concentration” 
has no meaning unless it has first been made clear what ensemble the mean 
is taken over. 

This last point can be illustrated by considering a “box model” of the 
dispersing cloud (van Ulden 1221). The assumption is that at time t after 
release, the gas is uniformly distributed within a circular cylinder (the “box”) 
of radius R and height H, where R and H depend on t. Then the gas concen- 
tration I’(x,t) is (Q/nR’H) if the point x lies within the cylinder and 0 other- 
wise. Suppose also that the cylinder is advected horizontally by the wind in 
a random direction, where this direction changes from realization to realiza- 
tion but remains fixed during any one realization. Let this advection take 
place at a constant speed U. Then, at time t after release from 0 the vertical 
axis of the cylinder lies on a cylinder of radius Ut. The situation is illustrated 
in Fig. 5, which shows the positions of the gas cloud in three separate realiza- 
tions, with C1, CZ, C3 denoting the positions of its axis in these realizations. 
In what follows, and in Fig. 5, it is assumed that Ut > R. 

Now consider the ensemble of realizations in which x is measured relative 
to the fixed point 0, the initial centre of mass of the gas cloud. Let P be a 
fixed point on the circle of radius Ut. The value of p (O;x, t) at P depends on 
the probability distribution of the random direction of advection of the cloud. 
The simplest assumption is that this distribution is isotropic, that is, it is the 
same in all horizontal directions. In this case the proportion of realizations 
for which, at time t, P lies within the gas cloud is equal to ($/2n), where 9 is 
the angle (in radians) subtended at 0 by the gas cloud. By elementary 
trigonometry sin(i$) = (R/2 Ut) so that, at P, and for this ensemble: 

p(e;x,t) =[ tarcsin,1(&)]6(0 ----$)+[I-farcsin (g)]&(B), 

(14) 
where 6 is the ordinary delta function. The class of probability density func- 



Fig. 5. Sketch illustrating discussion of use of box model in different ensembles. 

tions like eqn. (14) is discussed by Chatwin and Sullivan [23]. From eqn. (8) 
it then follows that at P, and for this ensemble, 

C(x,t) = ( &) [ f arcsin (&)]a (15) 

It can be seen immediately from eqn. (15) that C(x,t), the ensemble mean 
concentration, is much less than (Q/nR’H), the real concentration, whenever 
R is much less than Ut. According to most investigators using box models 
(van Ulden [22], Picknett [17] and Fay [S]), this condition will be satisfied 
since R becomes approximately proportional to t 1’2. 

Now consider a second ensemble of realizations whose only difference 
from the first is that x is measured throughout each realization relative to 
the instantaneous centre of mass of the cloud. Then, each realization is 
identical and p (8;x, t) is given by 

6 e- ( --& ,IxlGR; 1 
P(e;x,t) = 

s(e), 1x1 > R. 

Thus for this ensemble, again using eqn. (8), 

C(x,t) = 

(16) 

(17) 

in other words, for this ensemble, C(X, t) is identical with the real concen- 
tration. 

Apart from illustrating the point that the statistical properties of I’(x, t) 
depend on the choice of the ensemble to which they refer, the example 
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above illustrates one of the important differences between the analysis of 
turbulent diffusion phenomena in the framework of absolute diffusion (in 
which x is measured relative to a point fixed in space, as in the first ensemble 
above) and in the framework of relative diffusion (in which x is measured 
relative to a point moving with the dispersing cloud, as in the second 
ensemble above). When the framework of absolute diffusion is used, as in 
the first ensemble, the statistical properties of r(x, t) depend significantly 
on those eddies of the turbulence that control the motion of the cloud 
as a whole (“meandering”). These eddies have large length and time scales 
and the experimental determination of the statistical properties of l?(x, t) 
requires that these scales are all fully incorporated in the data. Consequently, 
very many realizations of the dispersion will be needed to obtain reliable 
estimates of the statistical properties. Furthermore, the values of these 
properties will be very different from the corresponding real values and, in 
particular, the ensemble mean concentration will be much less than the real 
concentration as illustrated by eqn. (15). In contrast, when the framework 
of relative diffusion is used, as in the second ensemble, the choice of the 
origin of x ensures automatically that the meandering of the cloud as a 
whole does not affect the statistical properties. The only eddies of the 
turbulence that are relevant are those that influence the distortion of the 
gas cloud about its centre. The length and time scales of such eddies are 
comparable with those of the cloud itself, and are therefore normally much 
less than the scales of the meandering which are relevant in absolute diffusion. 
In principle, therefore, it is a much more practical proposition to determine 
the statistical properties of I’(x, t) in the framework of relative diffusion than 
in that of absolute diffusion. In many circumstances there is another advan- 
tage in using relative diffusion (Batchelor [ 151, Chatwin and Sullivan [3] ). 
This is that the length scales of the controlling eddies in relative diffusion 
lie in the inertial subrange so that many powerful results follow from dimen- 
sional considerations. The eddies controlling the meandering do not lie in 
the inertial subrange. There are, however, two reasons why this advantage 
is unlikely to be of prime importance in heavy gas dispersion. These are the 
strong influence of buoyancy forces and the proximity of the ground. 

Despite these arguments in favour of using relative, rather than absolute, 
diffusion as a framework, there is an obvious, and seemingly almost over- 
whelming, advantage in using absolute diffusion in practical hazard analysis. 
This advantage is that what matters is the location of the hazards relative 
to the container and other fixed buildings and topographical features. Thus 
the statistical properties of l?(x, t) are required for an ensemble of realizations 
in which the origin of x is fixed in space. Such information is given only 
when the framework of absolute diffusion is used. 

The preceding discussion on different types of ensemble has, it is hoped, 
made clear the need for precise specification of the ensemble as an integral 
part of any hazard analysis. In particular, it should be realized that the 
ensemble for which practical predictions are required is not likely to be 
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that which is most convenient for conducting field trials. Thus, the hazard 
analysis for any particular container must consider all possible conditions of 
the ambient atmospheric turbulence, and the possibility of release occurring 
at any time of the day or night during any season of the year. On the other 
hand, field trials are likely to be conducted when the weather is fine and 
during the day time. Attention has therefore to be given to the extrapolation 
from the results of the field trials to the predictions for a real container. 

One practical solution to this extrapolation problem seems possible when 
the terrain and the statistical properties of the ambient turbulence are the 
same in all horizontal directions (horizontal isotropy). In such a case, changes 
in the direction of the advection of the cloud as a whole ought not signifi- 
cantly to increase the probability that hazardous conditions exist at any 
point x at time after release t. Then each trial in a series is a typical realiza- 
tion of those in a hypothetical ensemble (to be used in the analysis of hazards) 
in which, in each realization of the ensemble, the cloud is advected in a direc- 
tion which does not change during the realization, but which does change 
from realization to realization. The situation envisaged is very like that 
analyzed above and illustrated in Fig. 5, except that, instead of being con- 
stant, the speed of advection will be, in general, a random function of time. 
A hypothetical ensemble of this type can be constructed for each stability 
class and predictions for the ensemble of all possible releases can be obtained 
by making weighted combinations of the results from each separate ensemble, 
with the weights being based on the observed frequency of occurrence of 
each stability class. This procedure needs modification when horizontal 
isotropy is not satisfied because, for example, there are large buildings on 
one side of the container; also it does not take account of changes in the 
stability class during dispersion. 

The effects of finite resolution on experimental measurements of concentration 

It has already been explained in the Introduction to this paper that it is 
normally impossible to measure I(x, t) in real experiments. Because of the 
finite size of concentration sensors, and the finite time taken to make 
measurements, every experimental value of concentration is inevitably an 
average of I’(x,t) over a certain region D of space-time. Because of the con- 
struction and mode of functioning of the sensor this average may be weighted 
if, for example, different parts of the sensor respond differently than others 
to the gas-air mixture. Thus the value of I?(x, t) that is recorded, denoted by 
I’m (x,t), will satisfy an equation of the form 

jn w (x’, t’) dV(x’) dt’ ’ 
(18) 

where both the weight function w and the region D are characteristics of the 
sensor, to be determined by calibration. The integration over D involves both 
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an integration over a volume A containing X, and an integration over a time 
interval T containing t. 

Significant differences between I’(x) t) and rm(x, t) are likely to arise 
whenever the size of the volume A and the time interval T (which together 
form the region D) are not small compared with all scales characteristic of 
the structure and variation of the actual distribution of concentration I’(x, t). 
The smallest length scale will normally be of the order of the conduction 
cut-off length h, (whose definition, and physical significance, is discussed in, 
for example, Chatwin and Sullivan [3]), and the smallest time scale of the 
order of (h,/U), where U is a typical advection velocity at the location of the 
sensor. Differences between I’(x, t) and Pm(x, t ) could therefore be expected 
to be small whenever 

AlI3 e h, and r Q (h,/U). 

Taking typical values in field trials of h, and U as 10e3 m and 1 m set-’ , 
respectively, in eqn. (19), gives A “3 < 10m3 m and TQ lop3 set, conditions 
which seem almost impossible to meet in practice. In the trials reported by 
Picknett [17], for example, the gas sensors used had A1’3 of the order of 
10-l m and r of the order of 5 X low2 sec. 

The primary consequence of the seemingly inevitable differences between 
P(x,t) and P,(x,t) in field trials is that the distribution of l?,(x,t) will not 
represent correctly the fine-scale structure actually present in the distribution 
of P(x, t). Consider a simple example with a particular sensor for which A is 
a cube of side 10-l m, T is negligibly small and w, the weight function in 
eqn. (18), is 1 everywhere. Let 90% of A be pure air and the remaining 10% 
be a gas-air mixture mainly occupying volume elements of minimum dimen- 
sion of order X, . Suppose that the concentration of gas I’(x, t) within the 
gas-air mixture is 10%. The measured concentration of gas rm(X, t) will 
however be l%, giving no indication that flammable conditions exist within 
A (assuming that the gas is methane). While this example is over-simple, 
because it ignores the smoothing effects on the distribution of actual concen- 
tration P (x, t) of both non-uniform initial mixing and of molecular diffusion, 
it does illustrate that care is needed before assessing hazards in terms of 
P,(X,t). 

However it should also be particularly stressed now that l?,,,(X, t), like 
I’(%, t), is a random variable to which the statistical description developed 
earlier in this paper can be directly applied. A probability density function 
pm(B;x,t) can be defined by eqn. (5) with I’(x,t) replaced by P,(X,t). Like- 
wise the ensemble mean measured concentration C, (X ,t) and the ensemble 
mean square measured fluctuation T$,(x,~) can be defined by equations 
analogous to (8) and (9) respectively. In general it is clear that, unless eqn. 
(19) is satisfied, statistical properties of P(x, t) depending significantly on 
its fine-scale structure will not be closely estimated by the corresponding 
properties of rm (x, t). 
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Using p,(B;x, t), a quantity P,(x, t) can be defined by an equation like 
(ll), and hence, with one important proviso, the statistical description of 
hazards developed above can be used with pm (O;x, t) instead of p (B;x, t). 

The important proviso is that it must be possible to express satisfactorily 
the condition that a hazard is present at position x and time t in terms of 
the measured concentration rm(x, t), rather than the actual concentration 
r(x, t). Thus the simple example above and the experimental evidence of 
Birch, Brown and Dodson [16], illustrated in Figs. 2, 3 and 4, suggest that, 
because of the fine-scale heterogeneity in the structure of the actual con- 
centration I’(x, t), the relation 

0.05 < r,(X,t) < 0.15 (20) 

may not be a satisfactory criterion for assessing whether flammable conditions 
exist at position x and time t in a cloud of methane dispersing in air. Investi- 
gation is needed for each hazard (and for each set of sensor characteristics) 
to determine whether a simple criterion like eqn. (20) can be established. 

Provided this proviso can be met, it becomes clear that the apparent dis- 
advantages of the differences between I’(x, t) and rm (x, t) need not be a 
major obstacle, though it is clearly important that, in any report of experi- 
mental data, there should be clear and full statements of the sensor char- 
acteristics. 

The experimental estimation of concentration fluctuations 

While the main theme of this paper has been that research, both experi- 
mental and theoretical, should aim at estimating p (B;x, t), it is clear that this 
is not easy. A less ambitious aim (but one which should be regarded as 
second-best) is to estimate the distribution of 2 (x, t), the mean square fluc- 
tuation. This provides the simplest measure of the variability that can be 
expected between two realizations of the dispersion, and it is clear that some 
such measure is essential in any proper hazard analysis since this cannot be 
based on the mean concentration C (x, t) alone. 

The statements made above can be quantified when the form of p(t?;x, t) 

is known. For example, evidence like that shown in Fig. l(a) suggests that 
p (O;x, t) may be well approximated by a Gaussian function of 0 near the 
centre of the cloud. Then the probability that I’(x, t), the concentration in any 
one trial, differs from C(x,t) by more thand/(?(x,t)} is 2(1-@(l)}= 0.317, where 
Cp is the cumulative distribution function for the Gaussian distribution. An 
inverse type of calculation can also be made, namely the determination of 
concentration confidence limits between which the actual concentration has 
a specified probability of lying. Thus, for example, since a(1.65) = 0.95, 
there is a 90% chance that I’(x, t) lies between the confidence limits 
C(x, t) + 1.6w{z(x, t)}. Both of these types of calculation can be made 
when p (B;x, t) has a form other than Gaussian, provided C(x, t) and 2(x, t) 
can be estimated. 
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It was noted earlier that there are many models which aim at predicting 
the ensemble mean concentration C (x, t). Measurements of I’(x, t) then enable 
estimates of c (x, t) to be made, using eqn. (2). It is known (Chatwin and 
Sullivan [ 241) that there are several general results that c (X , t) must satisfy 
such as 

Ic(x, t)dV(x) = Ic(x,t)c(x+y,t)dV(x) = 0, (21) 

where the integrals are over the whole region occupied by the dispersing gas. 
If the experimental estimates of c (x, t) do not satisfy relations like those in 
eqn. (21), adjustments can be made to the theoretical estimates of the 
ensemble mean concentration. There are other relations, given in Chatwin 
and Sullivan [ 3,4], which 2(x, t) must satisfy, and these can also be used as 
checks of the experimental estimates. 

Concluding remarks 

For reasons of space, this paper contains no discussion of two important 
topics which are considered elsewhere [ 251. These are the influences on 
~(8 ;x, t) of the basic physical processes governing dispersion, such as advec- 
tion, molecular diffusion and the effect of buoyancy forces, and a discussion 
of simple forms of p (8;x, t) that might be practically adequate for hazard 
analysis. It is hoped however that the exclusion of these topics will have 
helped to stress the merits and practical usefulness of the statistical approach 
which this paper has tried to summarize. 
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